Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
05.01.2024

Урок на тему: Формула корней квадратного уравнения

Червякова Елена Вадимовна
учитель математики
Урок на тему: Формула корней квадратного уравнения
Чтобы найти корни уравнения, необходимо вычислить дискриминант. D = b 2 – 4ac. После чего корни квадратного уравнения рассчитываются по формуле x = (-b ± √ (b^2-4ac))/2a. При D > 0, уравнение имеет два корня; при D = 0, один корень; при D ˂ 0, уравнение корней не имеет. График квадратичной функции – парабола. Если значение а – положительное, то ветви параболы направлены вверх, отрицательное – вниз.

Содержимое разработки

У р о к №46 8а Дата___________
Тема урока: формулакорней квадратного уравнения

Цели урока: вывести общую формулу нахождения корней квадратного уравнения; формировать умение её использовать.

Развивающие: развивать логическое мышление учащихся.

воспитательная – воспитание трудолюбия, взаимопомощи, математической культуры; воспитание чувства ответственности перед товарищами, умение контролировать свои действия.

Планируемые результаты:

Личностного развития:

продолжать развивать умение ясно, точно и грамотно излагать свои мысли в устной и письменной речи,

развивать креативность мышления, инициативу, находчивость, активность при решении математических задач.

Метапредметного развития:

расширять кругозор, прививать умение совместно работать (чувство товарищества и ответственности за результаты своего труда);

продолжать развивать умение понимать и использовать математические средства наглядности.

Предметного развития:

формировать умение применять изученные понятия для решения задач практического характера.

Тип урока: комбинированный

Оборудование: учебник, доска, мел

Ход урока

I. Организационный момент.

II. Проверочная работа.

1. Выпишите коэффициенты a, b, c квадратного уравнения:

В а р и а н т 1

а) х2 – 3х + 17 = 0;

б) 3х2 = 2;

в) –7х + 16х2 = 0;

г)= 0.

В а р и а н т 2

а) 7х2 + 6х – 4 = 0;

б) –х2 = 5х;

в) 18 – х2 = 0;

г) – 4 = 0.

2. Найдите корни уравнения:

В а р и а н т 1

а) 2х2 – 18 = 0;

б) 4у2 + 7у = 0;

в) х2 + 16 = 0;

г) (х – 3)2 – 9 = 0.

В а р и а н т 2

а) х2 = 7;

б) 8у2 – 5у = 0;

в) х2 + 9 = 0;

г) (х + 3)2 – 4 = 0.

3. Решите уравнение приемом выделения квадрата двучлена:

В а р и а н т 1

2х2 – 24х + 54 = 0

В а р и а н т 2

3х2 + 24х – 27 = 0

III. Объяснение нового материала.

Для мотивации изучения общей формулы корней квадратного уравнения достаточно обратить внимание учащихся на д в а м о м е н т а:

1) решение квадратных уравнений выделением квадрата двучлена часто приводит к громоздким преобразованиям;

2) каждый раз, решая квадратное уравнение данным приёмом, мы повторяем одни и те же шаги (алгоритм).

Указанные пункты позволяют предположить, что можно провести рассуждения о решении квадратного уравнения приёмом выделения квадрата двучлена для уравнения общего вида.

Для наглядности и осознанности восприятия можно процесс вывода формулы корней квадратного уравнения разбить на несколько шагов, записывая при этом на доске параллельно решение конкретного уравнения и уравнения общего вида.

2х2 + 3х + 1 = 0

ах2 + bx + c = 0, a ≠ 0

Ш а г 1. Преобразуем уравнение в приведённое

х2 + = 0

х2 + = 0

Ш а г 2. Представим второе слагаемое в виде удвоенного произведения,
в котором один из множителей есть х

Ш а г 3. Прибавим к левой части уравнения выражение и вычтем его:

Ш а г 4. Выделим квадрат двучлена:

Ш а г 5. Решим полученное уравнение:

Замечаем, что в левой части уравнения находится квадрат выражения (двучлена). Количество корней уравнения зависит от знака правой части уравнения. Более того, 4а2 > 0 для любого а ≠ 0, значит, для решения важен только знак выражения b2 – 4ac. Так появляется понятие дискриминанта D = b2 – 4ac («дискриминант» в переводе с латинского – различитель).

После рассмотрения вопроса о количестве корней квадратного уравнения и вывода их общей формулы полезно вывесить на доску плакат:

Решение квадратного уравнения ax2 + bx + c = 0, a ≠ 0;

D = b2 – 4ac.

Если D < 0, то уравнение не имеет корней.

Если D = 0, то x = .

Если D > 0, то x = .

IV. Формирование умений и навыков.

На этом уроке основное внимание следует уделить вопросу определения количества корней квадратного уравнения с помощью дискриминанта. Желательно, чтобы учащиеся за урок выучили формулу D = b2 – 4ac и хорошо усвоили алгоритм нахождения корней квадратного уравнения.

1. № 533.

2. Докажите, что уравнение не имеет корней:

а) х2 – 5х + 9 = 0;

б) 3х2 – 7х + 18 = 0;

в) t2 – 2t + 8 = 0.

3. Убедитесь, что уравнение имеет единственный корень, найдите этот корень:

а) х2 – 8х + 16 = 0;

б) y2 – 3y + 9 = 0;

в) 0,04t2 – 0,2t + 0,25 = 0.

4. № 534 (а, в), № 535 (а, в, г), № 536 (в, д), № 538 (а).

V. Итоги урока.

В о п р о с ы у ч а щ и м с я:

– На чем основан вывод формулы корней квадратного уравнения?

– Как вычислить дискриминант квадратного уравнения?

– Сколько корней может иметь квадратное уравнение?

– Как определить количество корней квадратного уравнения?

– Если квадратное уравнение имеет единственный корень, то что можно сказать о трёхчлене, стоящем в левой части уравнения?

Домашнее задание: № 535 (б, д, е), № 536 (б, г, е)

У р о к №47 8а Дата____
Тема урока: формула корней квадратного уравнения

Цели урока: продолжить формирование умения решать квадратные уравнения по формуле.

Развивающие: развивать логическое мышление учащихся.

воспитательная – воспитание трудолюбия, взаимопомощи, математической культуры; воспитание чувства ответственности перед товарищами, умение контролировать свои действия.

Планируемые результаты:

Личностного развития:

продолжать развивать умение ясно, точно и грамотно излагать свои мысли в устной и письменной речи,

развивать креативность мышления, инициативу, находчивость, активность при решении математических задач.

Метапредметного развития:

расширять кругозор, прививать умение совместно работать (чувство товарищества и ответственности за результаты своего труда);

продолжать развивать умение понимать и использовать математические средства наглядности.

Предметного развития:

формировать умение применять изученные понятия для решения задач практического характера.

Тип урока: комбинированный

Оборудование: учебник, доска, мел

Ход урока

I. Организационный момент.

II. Устная работа.

– Вычислите:

а) ;б) ;в) ;

г) ;д) ;е) .

III. Проверочная работа.

– Вычислите дискриминант квадратного уравнения и напишите, сколько корней имеет уравнение:

В а р и а н т 1

а) 5х2 – 4х – 1 = 0;

б) х2 – 6х + 9 = 0;

в) 3хх2 + 10 = 0;

г) 2х + 3 + 2х2 = 0.

В а р и а н т 2

а) 3х2 – 5х + 2 = 0;

б) 4х2 – 4х + 1 = 0;

в) 2хх2 + 3 = 0;

г) 3х + 1 + 6х2 = 0.

О т в е т ы:

В а р и а н т 1

а) D = 36, 2 корня;

б) D = 0, 1 корень;

в) D = 49, 2 корня;

г)D = –20, нет корней.

В а р и а н т 2

а) D = 1, 2 корня;

б) D = 0, 1 корень;

в) D = 16, 2 корня;

г)D = –15, нет корней.

IV. Формирование умений и навыков.

На этом уроке основное внимание следует уделить непосредственному применению алгоритма вычисления корней квадратного уравнения по формуле. Важно, чтобы учащиеся запомнили этот алгоритм, а также желательно, чтобы они начали запоминать формулу корней.

Во избежание формального применения алгоритма на этом уроке следует решать упражнения, в которых требуется проводить преобразования квадратного уравнения к общему виду.

Кроме того, следует приучать учащихся преобразовывать даже квадратные уравнения стандартного вида к более «удобным», решение которых будет менее громоздким и трудным, чем решение исходного уравнения. Для этого следует обратить внимание на т р и с л у ч а я, встречающиеся при решении квадратных уравнений:

1) Коэффициент а является отрицательным. Нужно домножить обе части уравнения на –1.

2) Все коэффициенты уравнения имеют общий делитель. Нужно разделить обе части уравнения на этот делитель.

3) Среди коэффициентов уравнения встречаются дробные. Нужно умножить обе части уравнения на наименьшее общее кратное знаменателей дробей, чтобы коэффициенты стали целыми (возможны исключения).

Также на этом уроке следует чередовать полные и неполные квадратные уравнения, чтобы учащиеся осознанно выбирали рациональный способ решения: по общей формуле либо по одному из алгоритмов решения неполного квадратного уравнения.

1. № 541 (а, г, д).

2. № 542 (б, г, ж), № 543 (б, е).

3. № 544 (а, г), № 546 (б), № 547 (б, г).

4. № 549.

№ 544.

Р е ш е н и е

а) ;

= 0;

= 0;

D = = 225 + 136 = 361; D > 0; 2 корня.

= 1,7;

= –0,2.

О т в е т: –0,2; 1,7.

П р и м е ч а н и е. При решении этого квадратного уравнения нецелесообразно домножать обе части уравнения на число, чтобы получить целые коэффициенты. Наоборот, работа с дробным свободным членом позволяет упростить ход вычислений.

г) –x(x + 7) = (x – 2)(x + 2);

х2 – 7x = х2 – 4;

–2х2 – 7x + 4 = 0;

2х2 + 7x – 4 = 0;

D = (72) – 4 ∙ 2 ∙ (–4) = 49 + 32 = 81; D > 0; 2 корня.

= 0,5;

= –4.

О т в е т: –4; 0,5.

№ 546 (б).

Р е ш е н и е

15х2 + 17 = 15 (х + 1)2;

15х2 + 17 = 15 (х2 + 2х + 1);

15х2 + 17 = 15х2 + 30х + 15;

30х – 2 = 0;

х = .

О т в е т: .

№ 549.

х2 = 0,5х + 3.

Г р а ф и ч е с к о е р е ш е н и е

– Построим график функций у = х2 и у = 0,5х + 3.

Абсциссы точек пересечения графиков будут являться решением данного уравнения.

Графиком функции у = х2 является парабола, вершина которой находится в начале координат, ветви направлены вверх. Контрольные точки:

х

–2

–1

0

1

2

у

4

1

0

1

4

Графиком функции у = 0,5х + 3 является прямая, проходящая через точки:

х

0

–2

у

3

2

х1 ≈ –1; х2 = 2.

А н а л и т и ч е с к о е р е ш е н и е
(с помощью формулы корней)

х2 – 0,5х – 3 = 0;

2х2х – 6 = 0;

D = (–1)2 – 4 · 2 · (–6) = 1 + 48 = 49; D > 0; 2 корня.

= –1,5;

= 2.

О т в е т: –1,5; 2.

V. Итоги урока.

В о п р о с ы у ч а щ и м с я:

– Как определить количество корней квадратного уравнения?

– Каков алгоритм вычисления корней квадратного уравнения?

– Что нужно сделать, прежде чем применять алгоритм вычисления корней, если коэффициент а квадратного уравнения является отрицательным?

– Что нужно сделать, если все коэффициенты квадратного уравнения имеют общий делитель?

– Что нужно сделать, если хотя бы один коэффициент квадратного уравнения является дробным?

Домашнее задание: № 542 (а, в, е, з), № 543 (г, д)

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/560614-urok-na-temu-formula-kornej-kvadratnogo-uravn

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

Комментарии
Урок на тему "Формула корней квадратного уравнения" прекрасно структурирован и доступно объясняет процесс нахождения корней через дискриминант. Ясная формула и разъяснения по случаям D > 0, D = 0, D < 0 облегчают понимание. Важное включение графика квадратичной функции добавляет визуальный аспект, что способствует глубокому усвоению материала. Отличный урок для понимания и применения формулы квадратного уравнения.
Решение квадратных уравнений - ключевая тема алгебры средней школы. Представленная разработка уроков подробная, представлены различные виды заданий. Спасибо Елене Вадимовне за представленный материал.
Мне очень понравился урок. Учитель очень удачно подобрал материал. Спасибо за работу.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки