Охрана труда:
нормативно-правовые основы и особенности организации
Обучение по оказанию первой помощи пострадавшим
Аккредитация Минтруда (№ 10348)
Подготовьтесь к внеочередной проверке знаний по охране труда и оказанию первой помощи.
Допуск сотрудника к работе без обучения или нарушение порядка его проведения
грозит организации штрафом до 130 000 ₽ (ч. 3 статьи 5.27.1 КоАП РФ).
Повышение квалификации

Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014

Почему стоит размещать разработки у нас?
  • Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
  • Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
  • Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
Свидетельство о публикации
в СМИ
свидетельство о публикации в СМИ
Дождитесь публикации материала и скачайте свидетельство о публикации в СМИ бесплатно.
Диплом за инновационную
профессиональную
деятельность
Диплом за инновационную профессиональную деятельность
Опубликует не менее 15 материалов в методической библиотеке портала и скачайте документ бесплатно.
17.01.2015

Концепция духовно нравственного развития и воспитания личности гражданина России. Федеральный государственный образовательный стандарт основного общего образования

Концепция духовно-нравственного развития и воспитания личности гражданина России — это методологическая основа ФГОС основного общего образования. Материал раскрывает ключевые аспекты формирования ценностных ориентиров школьников. Включает содержание Федерального государственного образовательного стандарта (ФГОС ООО) и его реализацию на примере школьного курса математики. Рассматривается Фундаментальное ядро содержания общего образования, определяющее базовые элементы учебной программы. Необходимый ресурс для учителей, ориентированных на выполнение требований стандарта и воспитание гармоничной личности.

Содержимое разработки

§ 1. Концепция духовно – нравственного развития и воспитания личности гражданина России. Федеральный государственный образовательный стандарт основного общего образования

а) Концепция духовно-нравственного развития и воспитания личности гражданина России в сфере общего образования.

Концепция духовно-нравственного развития и воспитания личности гражданина России в сфере общего образования разработана в соответствии с Конституцией Российской Федерации, Законом Российской Федерации «Об образовании», на основе ежегодных посланий Президента России Федераль-ному собранию Российской Федерации.

В эпоху быстрой смены технологий, появляется необходимость фор-мирования принципиально новой дидактической модели непрерывного обра-зования. Новая модель образования предполагает активную роль всех участ-ников образовательного процесса в формировании мотивированной компе-тентной личности, способной быстро ориентироваться в динамично разви-вающемся и обновляющемся информационном пространстве.

Концепция представляет собой ценностно – нормативную основу взаимодействия общеобразовательных учреждений с другими субъектами социализации – семьёй, общественными организациями, религиозными объединениями, учреждениями дополнительного образования, культуры и спорта, средствами массовой информации. Целью этого взаимодействия является совместное обеспечение условий для духовно-нравственного развития и воспитания обучающихся. Общеобразовательные учреждения должны воспитывать гражданина и патриота, раскрывать способности и таланты молодых россиян, готовить их к жизни в высокотехнологичном конкурентном мире. При этом образовательные учреждения должны постоянно взаимодействовать и сотрудничать с семьями обучающихся, другими субъектами социализации, опираясь на национальные традиции.

Концепция формулирует социальный заказ современной общеобразова-тельной школе как определённую систему общих педагогических требований, соответствие которым обеспечит эффективное участие образования в решении важнейших общенациональных задач.

Одной из важнейших задач – воспитание – педагогически организованный целенаправленный процесс развития обучающегося как личности, гражданина, освоения и принятия им ценностей, нравственных установок и моральных норм общества.

Современный национальный воспитательный идеал – это высоконрав-ственный, творческий, компетентный гражданин России, принимающий судьбу Отечества как свою личную, осознающий ответственность за настоя-щее и будущее своей страны, укоренённый в духовных и культурных тради-циях многонационального народа Российской Федерации.

Организация воспитательного процесса в системе «школа – семья – социум» потребует возвращения в систему образования педагогов, готовых не только учить, но и воспитывать обучающихся. Воспитание человека, формирование свойств духовно развитой личности, любви к своей стране, потребности творить и совершенствоваться есть важнейшее условие успешного развития России. Духовно – нравственное развитие и воспитание гражданина России является ключевым фактором развития страны, обеспечения духовного единства народа и объединяющих его моральных ценностей, политической и экономической стабильности. Невозможно создать современную инновационную экономику, минуя человека, его состояния и качества внутренней жизни.

б) Федеральный государственный образовательный стандарт основного общего образования; ФГОС ООО школьного курса математики.

Следствием внешних и внутренних тенденций в развитии общества и образования явилась разработка стандартов второго поколения. Федеральный государственный образовательный стандарт основного общего образования (далее – Стандарт) представляет собой совокупность требований, обязательных при реализации основной образовательной программы основного общего образования образовательными учреждениями, имеющими государственную аккредитацию.

В основе Стандарта лежит системно – деятельностный подход, который обеспечивает:

формирование готовности к саморазвитию и непрерывному образованию;

проектирование и конструирование социальной среды развития обучающихся в системе образования;

активную учебно-познавательную деятельность обучающихся;

построение образовательного процесса с учётом индивидуальных возрастных, психологических и физиологических особенностей обучающихся.

Стандарт устанавливает требования к результатам освоения обучающимися основной образовательной программы основного общего образования:

личностным, включающим готовность и способность обучающихся к саморазвитию и личностному самоопределению, сформированность их мотивации к обучению и целенаправленной познавательной деятельности, системы значимых социальных и межличностных отношений, ценностно-смысловых установок, отражающих личностные и гражданские позиции в деятельности, социальные компетенции, правосознание, способность ставить цели и строить жизненные планы,способность к осознанию российской идентичности в поликультурном социуме;

метапредметным,включающим освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные), способность их использования в учебной, познавательной и социальной практике, самостоятельность планирования и осуществления учебной деятельности и организации учебного сотрудничества с педагогами и сверстниками, построение индивидуальной образовательной траектории;

предметнымвключающим освоенные обучающимися в ходе изучения учебного предмета умения специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений, владение научной терминологией, ключевыми понятиями, методами и приемами.

Изучение предметной области «Математика» должно  обеспечить:

осознание значения математики в повседневной жизни человека;

формирование представлений о социальных, культурных и исторических факторах  становления математической науки;

формирование представлений о математике как части общечеловеческой культуры, универсальном языке науки, позволяющем описывать и изучать реальные процессы и явления.

В результате изучения обучающиеся развивают логическое и математическое мышление, получают представление о математических моделях; овладевают математическими рассуждениями; учатсяприменять математические знания при решении различных задач и оценивать полученные результаты; овладевают умениями решения учебных задач; развивают математическую интуицию; получают представление об основных информационных процессах в реальных ситуациях.

в) Фундаментальное ядро содержания общего образования. Математика

Фундаментальное ядро содержания общего образования – базовый документ, необходимый для создания базисных учебных планов, программ, учебно-методических материалов и пособий. Таким образом, Фундаментальное ядро содержания общего образования фактически нормирует содержание учебных программ и организацию учебной деятельности по отдельным учебным предметам, определяя элементы научного знания, культуры и функциональной грамотности, без освоения или знакомства с которыми уровень общего образования, достигнутый выпускником российской школы начала XXI столетия, не может быть признан достаточным для полноценного продолжения образования и последующего личностного развития.

Фундаментальное ядро как средство универсализации содержания общего образования позволяет реализовать важнейшие требования общества к образовательной системе:

сохранение единства образовательного пространства, преемственности ступеней образовательной системы;

обеспечение равенства и доступности образования при различных стартовых возможностях;

достижение социальной консолидации и согласия в условиях роста социального, этнического, религиозного и культурного разнообразия нашего общества на основе формирования российской идентичности и общности всех граждан и народов России;

формирование общего деятельностного базиса как системы универсальных учебных действий, определяющих способность личности учиться, познавать, сотрудничать в познании и преобразовании окружающего мира.

Математика ― наука о наиболее общих и фундаментальных структурах реального мира, является важнейшим источник принципиальных идей для всех естественных наук и современных технологий. Весь научно-технический прогресс человечества напрямую связан с развитием математики. Математика позволяет успешно решать практические задачи: оптимизировать семейный бюджет и правильно распределять время, критически ориентироваться в статистической, экономической и логической информации, правильно оценивать рентабельность возможных деловых партнеров и предложений, проводить несложные инженерные и технические расчеты для практических задач. Принципиально важно согласование математики и других учебных предметов. Хотя математика — единая наука без четких граней между разными ее разделами, но в соответствии с традициями разбита на разделы: «Арифметика», «Алгебра», «Геометрия», «Математический анализ», «Вероятность и статистика». Вместе с тем предполагается знакомство с историей математики и овладение следующими общематематическими понятиями и методами:

Определения и начальные (неопределяемые) понятия. Доказательства; аксиомы и теоремы. Гипотезы и опровержения. Контрпример. Типичные ошибки в рассуждениях.

Прямая и обратная теорема. Существование и единственность объекта. Необходимое и достаточное условие верности утверждения. Доказательство от противного. Метод математической индукции.

Математическая модель. Математика и задачи физики, химии, биологии, экономики, географии, лингвистики, социологии и пр.

Содержание

Математика

Натуральные числа. Десятичная система счисления. Арифметические действия над натуральными числами. Устный счет. Прикидка и оценка результатов вычислений. Степени и корни числа. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком. Целые числа.

Обыкновенные и десятичные дроби, операции над ними. Проценты. Пропорции.

Свойства числовых равенств и неравенств.

Решение текстовых задач арифметическим способом.

Измерение величин. Метрические системы единиц. Измерение отрезков.

Алгебра

Многочлены и действия над ними. Квадратный трехчлен.

Формулы сокращенного умножения. Разложение многочлена на множители. Алгебраические дроби и действия над ними.

Числовое значение буквенного выражения. Тождественные преобразования. Допустимые значения переменных.

Уравнения, неравенства и их системы. Решение линейных и квадратных уравнений. Рациональные корни многочленов с целыми коэффициентами. Равносильность уравнений, неравенств и их систем.

Составление уравнений, неравенств и их систем по условиям задач. Решение текстовых задач алгебраическим методом. Интерпретация результата, отбор решений.

Расширение понятия числа: натуральные, целые, рациональные и иррациональные числа. Комплексные числа и их геометрическая интерпретация. Основная теорема алгебры (без доказательства).

Числовые последовательности.Арифметическая и геометрическая прогрессии. Сложные проценты. Сумма бесконечно убывающей геометрической прогрессии. Понятие о методе математической индукции.

Геометрия

Геометрические фигуры на плоскости и в пространстве. Отрезок, прямая, угол, треугольники, четырехугольники, многоугольники, окружность, многогранники, шар и сфера, круглые тела и поверхности; их основные свойства. Взаимное расположение фигур.

Параллельное проектирование, изображение пространственных фигур.

Прямоугольный треугольник. Теорема Пифагора. Синус, косинус, тангенс угла. Соотношения между сторонами и углами в треугольнике.

Движение. Симметрия фигур. Подобие фигур.

Геометрические величины и измерения. Длина отрезка. Градусная и радианная мера угла. Длина окружности, число . Понятие площади и объема. Основные формулы для вычисления площадей и объемов.

Координаты и векторы.

Представления об аксиоматическом методе и о геометрии Лобачевского.

Решение задач на построение, вычисление, доказательство. Применение при решении геометрических задач соображений симметрии и подобия, методов геометрических мест, проектирования и сечений, алгебраических методов, координатного, векторного метода.

Математический анализ

Действительные числа. Бесконечные десятичные дроби. Рациональные и иррациональные числа. Периодические и непериодические десятичные дроби. Координаты. Изображение чисел точками координатной прямой. Модуль числа. Декартова система координат на плоскости.

Функция и способы ее задания. Чтение и построение графиков функций. Основные свойства функции: монотонность, промежутки возрастания и убывания, максимумы и минимумы, ограниченность функций, четность и нечетность, периодичность.

Элементарные функции: линейная, квадратичная, многочлен, дробно-линейная, степенная, показательная, логарифмическая. Тригонометрические функции, формулы приведения, сложения, двойного угла. Преобразование выражений, содержащих степенную, тригонометрические, логарифмическую и показательную функции. Решение соответствующих уравнений и неравенств.

Графическая интерпретация уравнений, неравенств с двумя неизвестными и их систем.

Композиция функций. Обратная функция.

Преобразования графиков функций.

Непрерывность. Промежутки знакопостоянства непрерывной функции. Метод интервалов.

Понятие о производной функции в точке. Физический и геометрический смысл производной. Использование производной при исследовании функций, построении графиков. Использование свойств функций при решении текстовых, физических и гео­метриче­ских задач. Решение задач на экстремум.

Понятие об определенном интеграле как площади криволинейной трапеции. Первообразная. Формула Ньютона – Лейбница. Приложения определенного интеграла.

Вероятность и статистика

Представление данных, их числовые характеристики. Таблицы и диаграммы. Случайный выбор, выборочные исследования. Интерпретация статистических данных и их характеристик. Случайные события и вероятность. Вычисление вероятностей. Перебор вариантов и элементы комбинаторики. Испытания Бернулли. Случайные величины и их характеристики. Частота и вероятность. Закон больших чисел. Оценка вероятностей наступления событий в простейших практических ситуациях.

Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/95562-koncepcija-duhovno--nravstvennogo-razvitija-

Свидетельство участника экспертной комиссии
Рецензия на методическую разработку
Опубликуйте материал и закажите рецензию на методическую разработку.
Также вас может заинтересовать
Свидетельство участника экспертной комиссии
Свидетельство участника экспертной комиссии
Оставляйте комментарии к работам коллег и получите документ
БЕСПЛАТНО!
У вас недостаточно прав для добавления комментариев.

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.

 

Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)

Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.

Рекомендуем Вам курсы повышения квалификации и переподготовки