- Курс-практикум «Педагогический драйв: от выгорания к горению»
- «Формирование основ финансовой грамотности дошкольников в соответствии с ФГОС ДО»
- «Патриотическое воспитание в детском саду»
- «Федеральная образовательная программа начального общего образования»
- «Труд (технология): специфика предмета в условиях реализации ФГОС НОО»
- «ФАООП УО, ФАОП НОО и ФАОП ООО для обучающихся с ОВЗ: специфика организации образовательного процесса по ФГОС»
- Курс-практикум «Цифровой арсенал учителя»
- Курс-практикум «Мастерская вовлечения: геймификация и инновации в обучении»
- «Обеспечение безопасности экскурсионного обслуживания»
- «ОГЭ 2026 по русскому языку: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по литературе: содержание экзамена и технологии подготовки обучающихся»
- «ОГЭ 2026 по информатике: содержание экзамена и технологии подготовки обучающихся»
Свидетельство о регистрации
СМИ: ЭЛ № ФС 77-58841
от 28.07.2014
- Бесплатное свидетельство – подтверждайте авторство без лишних затрат.
- Доверие профессионалов – нас выбирают тысячи педагогов и экспертов.
- Подходит для аттестации – дополнительные баллы и документальное подтверждение вашей работы.
в СМИ
профессиональную
деятельность
Определение параллельных прямых. признаки параллельности двух прямых
Тема: «ОПРЕДЕЛЕНИЕ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. ПРИЗНАКИ ПАРАЛЛЕЛЬНОСТИ ДВУХ ПРЯМЫХ»
Цель:
ввести понятие параллельных прямых;
рассмотреть признак параллельности двух прямых, связанный с накрест лежащими углами.
Ход урока
I.Организационный момент
Здравствуйте ребята, приготовились к уроку. Дежурный – отсутствующие?
II.Актуализация знаний
-Сформулировать признаки равенства треугольников.
III.Объяснение нового материала.
1. Назовите возможные случаи взаимного расположения двух прямых на плоскости.
2. Возможен ли случай, когда две прямые не могут иметь двух или более общих точек.
3. Определение параллельных прямых:
«Две прямые на плоскости называются параллельными, если они не пересекаются».
Соответствующее обозначение: а || в.
4. Рассмотрим рис. 99. Что вы видите на рисунке.
«Два отрезка (луча) называются параллельными, если они лежат на параллельных прямых».
Аналогично определяется параллельность отрезка и прямой, луча и прямой, отрезка и луча.
5. Рассмотрим рисунок 100. Что вы видите?
«Прямая, пересекающая две прямые а и b в двух точках, называется секущей»
6. При пересечении двух прямых секущей образуются пары углов: накрест лежащие углы, односторонние углы, соответственные углы (рис. 100).
7. По заранее заготовленным таблицам или рисункам на доске провести работу:
1) По рисунку 1 назовите пары накрест лежащих, односторонних, соответственных углов.
2) На рисунке 2 ∠4 = ∠6. Докажите, что ∠5 = ∠3; ∠8 = ∠6; ∠2 = ∠5.
3) На рисунке 3 ∠1 = ∠5:
а) выпишите все пары накрест лежащих углов и докажите, что в каждой паре углы равны;
б) выпишите все пары соответственных углов и докажите, что в каждой паре углы равны;
в) выпишите все пары односторонних углов и докажите, что сумма углов в каждой паре равна 180°.
8. Озвучьте признаки равенства треугольников и утверждение о том, что две прямые, перпендикулярные к третьей, не пересекаются (п. 12).
9. Вспомните еще раз определение параллельных прямых.
Так как прямые бесконечны, то невозможно непосредственно убедиться в том, что они не имеют общей точки. Поэтому желательно иметь какие-то признаки, по которым можно сделать вывод о параллельности прямых. С понятием «признак» мы уже встречались, когда изучали признаки равенства треугольников. Теперь же предстоит познакомиться с признаками параллельности двух прямых.
Работа с учебником и электронным приложением «Геометрия 7-9»
1. Проведение при помощи ЭП доказательство теоремы - признака параллельности двух прямых, использующего накрест лежащие углы
Это доказательство не является традиционным - во многих учебниках этот признак доказывается методом от противного. В процессе доказательства будут произведены дополнительные построения.
2. Теорема является важной и сама по себе, и потому, что на нее опираются доказательства других признаков параллельности прямых.
3. Устно решим задачу № 187 (рис. 107) и задачу № 189 (по рис. 108 или по ранее заготовленным плакатам).
V.Закрепление изученного материала.
1. Задача. Найти пары параллельных прямых (отрезков) и доказать их параллельность (по готовым чертежам на доске (см. рис. 1-3):
2. Решить задачу № 191 на доске и в тетрадях учащихся.
Дано: ΔABC; ВК - биссектриса ВМ = МК.
Докажите, что КМ || АВ.
Доказательство: По условию ВМ = МК, тогда треугольник ВМК — равнобедренный (по определению), значит, ∠MBK = ∠MKB (углы при основании равнобедренного треугольника равны). По условию ВК — биссектриса ∠B, то ∠MBK = ∠ABK.
Следовательно, ∠ABK = ∠MBK = ∠MKB, a ∠ABK и ∠MKB — накрест лежащие углы, тогда АВ || КМ.
Итоги урока.
Домашнее задание: изучить пункты 24-25 (только первый признак); решить задачи № 186, 188.
Адрес публикации: https://www.prodlenka.org/metodicheskie-razrabotki/188601-opredelenie-parallelnyh-prjamyh-priznaki-para
БЕСПЛАТНО!
Для скачивания материалов с сайта необходимо авторизоваться на сайте (войти под своим логином и паролем)
Если Вы не регистрировались ранее, Вы можете зарегистрироваться.
После авторизации/регистрации на сайте Вы сможете скачивать необходимый в работе материал.
- «Реализация инвариантного модуля «Производство и технологии» учебного предмета «Труд (технология)» по ФГОС»
- «Основы реабилитационной работы в социальной сфере»
- «Методика преподавания информатики»
- «Организация работы с обучающимися с ОВЗ в практике учителя технологии»
- «Чрезвычайные ситуации: классификация, характер и поражающие факторы»
- «Методика и технологии обучения учащихся с ОВЗ в условиях реализации ФГОС»
- Организация деятельности советника директора по воспитанию
- Реализация учебно-воспитательного процесса в дошкольной образовательной организации
- Образовательные технологии и методики обучения основам безопасности жизнедеятельности
- Педагогическое образование: педагогика и методика преподавания химии в образовательной организации
- Воспитательная деятельность в образовательной организации
- Содержание и организация тьюторского сопровождения в образовании

Чтобы оставлять комментарии, вам необходимо авторизоваться на сайте. Если у вас еще нет учетной записи на нашем сайте, предлагаем зарегистрироваться. Это займет не более 5 минут.